
Mind Your Keys?
A Security Evaluation of Java Keystores

Riccardo Focardi
Università Ca’ Foscari

Cryptosense
focardi@unive.it

Francesco Palmarini
Università Ca’ Foscari

Yarix
palmarini@unive.it

Marco Squarcina
Università Ca’ Foscari

Cryptosense
squarcina@unive.it

Graham Steel

Cryptosense

graham@cryptosense.com

Mauro Tempesta

Università Ca’ Foscari

tempesta@unive.it

Abstract—Cryptography is complex and variegate and re-
quires to combine different algorithms and mechanisms in non-
trivial ways. This complexity is often source of vulnerabilities.
Secure key management is one of the most critical aspects,
since leaking a cryptographic key vanishes any advantage of
using cryptography. In this paper we analyze Java keystores,
the standard way to manage and securely store keys in Java
applications. We consider seven keystore implementations from
Oracle JDK and Bouncy Castle, a widespread cryptographic
library. We describe, in detail, how the various keystores enforce
confidentiality and integrity of the stored keys through password-
based cryptography and we show that many of the implementa-
tions do not adhere to state-of-the-art cryptographic standards.
We investigate the resistance to offline attacks and we show that,
for non-compliant keystores, brute-forcing can be up to three
orders of magnitude faster with respect to the most compliant
keystore. Additionally, when an attacker can tamper with the
keystore file, some implementations are vulnerable to denial of
service attacks or, in the worst case, arbitrary code execution.
Finally we discuss the fixes implemented by Oracle and Bouncy
Castle developers following our responsible disclosure.

I. INTRODUCTION

Cryptography is a fundamental technology for IT security.
Even if there are well established standards for cryptographic
operations, cryptography is complex and variegated, typically
requiring a non-trivial combination of different algorithms and
mechanisms. Moreover, cryptography is intrinsically related
to the secure management of cryptographic keys which need
to be protected and securely stored by applications. Leaking
cryptographic keys, in fact, diminishes any advantage of cryp-
tography, allowing attackers to break message confidentiality
and integrity, to authenticate as legitimate users or impersonate
legitimate services. Quoting [51], “key management is the
hardest part of cryptography and often the Achilles’ heel of
an otherwise secure system”.

In the recent years we have faced a multitude of flaws
related to cryptography (e.g., [16], [12], [36], [35]). Some
of these are due to the intrinsic complexity of cryptography,

that makes it hard to design applications that adopt secure
combinations of mechanisms and algorithms. For example, in
padding oracle attacks, the usage of some (standard) padding
for the plaintext combined with a specific algorithm or mech-
anism makes it possible for an attacker to break a ciphertext
in a matter of minutes or hours [54], [19], [12]. Most of
the time this is not a developer fault as, unfortunately, there
are well-known flawed mechanisms that are still enabled in
cryptographic libraries. In other cases, the attacks are due to
flaws in protocols or applications. The infamous Heartbleed
bug allowed an attacker to get access to server private keys
through a simple over-read vulnerability. Once the private key
was leaked, the attacker could decrypt encrypted traffic or
directly impersonate the attacked server [36].

Thus, breaking cryptography is not merely a matter of
breaking a cryptographic algorithm: the attack surface is
quite large and the complexity of low-level details requires
abstractions. Crypto APIs offer a form of abstraction to devel-
opers that allows to make use of cryptography in a modular
and implementation-independent way. The Java platform, for
example, provides a very elegant abstraction of cryptographic
operations that makes it possible, in many cases, to replace
a cryptographic mechanism or its implementation with a
different one without modifying the application code.

Crypto APIs, however, do not usually provide security
independently of the low-level implementation: default mecha-
nisms are often the weakest ones, thus developers have to face
the delicate task of choosing the best mechanism available for
their needs. For example, in the Java Cryptography Architec-
ture (JCA), ECB is the default mode of operation for block
ciphers [4] and PKCS#1 v1.5 is the default padding scheme
for RSA [5], which is well know to be subject to padding
oracle attacks [19]. Additionally, crypto APIs that promise to
provide security for cryptographic keys have often failed to do
so: in PKCS#11, the standard API to cryptographic tokens, it
is possible to wrap a sensitive key under another key and then
just ask the device to decrypt it, obtaining the value of the
sensitive key in the clear [23], and violating the requirement
that “sensitive keys cannot be revealed in plaintext off the
token” [48].

In this paper we analyze in detail the security of key
management in the Java ecosystem and, in particular, of
Java keystores. Password-protected keystores are, in fact, the
standard way to securely manage and store cryptographic keys
in Java: once the user (or the application) provides the correct
password, the keys in the keystore become available and can be

Network and Distributed Systems Security (NDSS) Symposium 2018
18-21 February 2018, San Diego, CA, USA
ISBN 1-1891562-49-5
http://dx.doi.org/10.14722/ndss.2018.23083
www.ndss-symposium.org

used to perform cryptographic operations, such as encryption
and digital signature. The KeyStore Java class abstracts
away from the actual keystore implementation, which can be
either in the form of an encrypted file or based on secure
hardware. As discussed above, this abstraction is very impor-
tant for writing code that is independent of the implementation
but developers are still required to select among the various
keystore types offered by Java. Unfortunately, the information
in the keystore documentation is not enough to make a rea-
soned and informed choice among the many alternatives. More
specifically, given that the Java Keystore API does not provide
control over the cryptographic mechanisms and parameters
employed by each keystore, it is crucial to assess the security
provided by the different implementations, which motivated us
to perform the detailed analysis reported in this paper. In fact,
our work is the first one studying the security of keystores for
general purpose Java applications.

We have estimated the adoption rate and analyzed the
implementation details of seven different Java keystores of-
fered by the Oracle JDK and by Bouncy Castle, a widespread
cryptographic library. Keystores are used by hundreds of
commercial applications and open-source projects, as assessed
by scraping the GitHub code hosting service including leading
web applications servers and frameworks, e.g., Tomcat [6],
Spring [8], Oracle Weblogic [2]. Additionally, keystores have
been found to be widespread among security-critical custom
Java software for large finance, government and healthcare
companies audited by the authors.

The security of keystores is achieved by performing a
cryptographic operation C under a key which is derived
from a password through a function F called Key Derivation
Function (KDF). The aim of the cryptographic operation C is
to guarantee confidentiality and/or integrity of the stored keys.
For example, a Password-Based Encryption (PBE) scheme is
used to protect key confidentiality: in this case C is typically a
symmetric cipher, so that keys are encrypted using the provided
password before being stored in the keystore. In order to
retrieve and use that key, the keystore implementation will
perform the following steps: (a) obtain the password from the
user; (b) derive the encryption key from the password using
F ; (c) decrypt the particular keystore entry through C, and
retrieve the actual key material. Notice that different passwords
can be used to protect different keys and/or to achieve integrity.
To prevent attacks, it is highly recommended that C and F
are implemented using standard, state-of-the-art cryptographic
techniques [40], [49].

Interestingly, we have found that the analyzed keystores
use very diverse implementations for C and F and in several
cases they do not adhere to standards or use obsolete and ad-
hoc mechanisms. We show that, most of the time, keystores
using weak or custom implementations for the key derivation
function F open the way to password brute-forcing. We have
empirically measured the speed-up that the attacker achieves
when these flawed keystores are used and we show that, in
some cases, brute-forcing is three orders of magnitude faster
with respect to the keystores based on standard mechanisms.
We even found keystores using the deprecated cipher RC2 that
enables an attacker to brute-force the 40-bit long cryptographic
key in a matter of hours using a standard desktop computer.

Our analysis has also pointed out problems related to

availability and malicious code execution, which are caused
by type-flaws in the keystore, i.e., bugs in which an object
of a certain type is interpreted as one of a different type.
In particular, by directly tampering with the keystore file, an
attacker could trigger denial of service (DoS) attacks or even
arbitrary code execution. Interestingly, we also found that the
use of standard key derivation functions can sometimes enable
DoS attacks. These functions are parametrized by the number
of internal iterations, used to slow down brute-forcing, which
is stored in the keystore file. If the number of iterations is set
to a very big integer, the key derivation function will hang,
blocking the whole application.

Unless stated otherwise, our findings refer to Oracle
JDK 8u144 and Bouncy Castle 1.57, the two latest releases at
the time of the first submission of this work in August 2017.

Contributions: Our contributions can be summarized as
follows:

(i) we define a general threat model for password-protected
keystores and we distill a set of significant security
properties and consequent rules that any secure keystore
should adhere to;

(ii) we perform a thoughtful analysis of seven keystores, we
report undocumented details about their cryptographic
implementations and we classify keystores based on our
proposed properties and rules;

(iii) we report on unpublished attacks and weaknesses in the
analyzed keystores. For each attack we point out the
corresponding violations of our proposed properties and
rules and we provide a precise attacker model;

(iv) we empirically estimate the speed-up due to bad crypto-
graphic implementations and we show that, in some cases,
this allows to decrease the guessing time of three orders
of magnitude with respect to the most resistant keystore,
and four orders of magnitude with respect to NIST
recommendations; interestingly, the attack on Oracle JKS
keystore that we present in this paper, and we previously
mentioned in a blog post [25], has been recently integrated
into the Hashcat password recovery tool;

(v) we discuss the advancements on the security of Oracle
and Bouncy Castle keystore implementations following
our responsible disclosure. The Oracle Security Team
acknowledged the reported issues by assigning two CVE
IDs [37], [38] and released partial fixes in the October
2017 Critical Patch Update [44]. Other fixes are expected
to be released in January 2018 [43]. Bouncy Castle
developers patched some of the reported vulnerabilities
in version 1.58. As of November 2017, remaining issues
are being addressed in the development repository.

Paper Organization: We discuss related work in Section II;
in Section III we define the security properties of interest,
the rules for the design of secure keystores and the threat
model; in Section IV we report on our analysis of seven
Java keystores; in Section V we describe unpublished attacks
on the analyzed keystores; in Section VI we make an em-
pirical comparison of the password cracking speed among
the keystores; in Section VII we discuss the improvements
implemented by Oracle and Bouncy Castle following our
responsible disclosure; finally, in Section VIII we draw some
concluding remarks.

2

II. RELATED WORK

Cooijmans et al. [24] have studied various key storage
solutions in Android, either provided as an operating system
service or through the Bouncy Castle cryptographic library.
The threat model is very much tailored to the Android operat-
ing system and radically different from the one we consider in
this paper. Offline brute-forcing, for example, is only discussed
marginally in the paper. Interestingly, authors show that under
a root attacker (i.e., an attacker with root access to the device),
the Bouncy Castle software implementation is, in some respect,
more secure than the Android OS service using TrustZone’s
capabilities, because of the possibility to protect the keystore
with a user-supplied password. Differently from our work, the
focus of the paper is not on the keystore design and the adopted
cryptographic mechanisms.

Sabt et al. [50] have recently found a forgery attack in
the Android KeyStore service, an Android process that offers
a keystore service to applications and is out of the scope
of our work. However, similarly to our results, the adopted
encryption scheme is shown to be weak and not compliant
to the recommended standards, enabling a forgery attack that
make apps use insecure cryptographic keys, voiding any benefit
of cryptography.

Li et al. [33] have analyzed the security of web password
managers. Even if the setting is different, there are some inter-
esting similarities with keystores. In both settings a password is
used to protect sensitive credentials, passwords in one case and
keys in the other. So the underlying cryptographic techniques
are similar. However the kind of vulnerabilities found in the
paper are not related to cryptographic issues. Gasti et al. [27]
have studied the format of password manager databases. There
is some similarity with our paper for what concerns the threat
model, e.g., by considering an attacker that can tamper with
the password database. However, the setting is different and
the paper does not account for cryptographic weaknesses and
brute-forcing attacks.

Many papers have studied password resistance to guessing,
e.g., [31], [21], [55], [57]. While this is certainly a very
important subject, our paper takes a complementary perspec-
tive: we analyze whether Java keystores provide a sufficient
resistance to brute-forcing, compared to existing standards
and recommendations. Of course, using a tremendously weak
password would make it possible for the attacker to guess it,
independently of the keystore implementation. Similarly, if the
password is very long and with high entropy, the guess would
be infeasible anyway. However, when a password is reasonably
strong, the actual implementation makes a difference: brute-
force is prevented only when key derivation is done accord-
ingly to recommendations.

Kelsey et al. introduced the notion of key stretching, a
mechanism to increase the time of brute-forcing for low
entropy keys [32]. The basic idea is that key derivation should
iterate the core derivation function l times so to multiply the
computational cost of brute-forcing by l and make it equiv-
alent to the cost of brute-forcing a password with additional
log2l bits. Intuitively, through this strategy, brute-forcing each
password requires the same time as brute-forcing l passwords.
Combined with standard random salting (to prevent precom-
putation of keys), key stretching effectively slows down brute-

forcing, and prevents guessing the password even when its
complexity is not very high. This idea is at the base of modern,
state-of-the-art key derivation functions. In [10], [56], [15],
this mechanism has been formalized and analyzed, providing
formal evidence of its correctness. Standard key derivation
functions are all based on key stretching and salting to slow
down brute-forcing [40], [49]. In our paper we advocate the
use of these standard mechanisms for keystores security.

III. SECURITY PROPERTIES AND THREAT MODEL

In this section, we identify a set of fundamental security
properties that should be guaranteed by any keystore (Sec-
tion III-A). We then distill rules that should be followed when
designing a keystore in order to achieve the desired security
properties (Section III-B). Finally, we introduce the threat
model covering a set of diverse attacker capabilities that enable
realistic attack scenarios (Section III-C).

A. Security Properties

We consider standard security properties such as confiden-
tiality and integrity of keys and keystore entries. Breaking
confidentiality of sensitive keys allows an attacker to intercept
all the encrypted traffic or to impersonate the user. Breaking
integrity has similar severe consequences as it might allow an
attacker to import fake CA certificates and old expired keys.
Additionally, since the access to a keystore is mediated by a
software library or an application, we also consider the effect
that a keystore has on the execution environment. Thus, we
require the following properties:

P1 Confidentiality of encrypted entries
P2 Integrity of keystore entries
P3 System integrity

Property P1 states that the value of an encrypted entry should
be revealed only to authorized users, who know the correct
decryption password. According to P2, keystore entries should
be modified, created or removed only by authorized users,
who know the correct integrity password, usually called store
password. Property P3 demands that the usage of a keystore
should always be tolerated by the environment, i.e., interacting
with a keystore, even when provided by an untrusted party,
should not pose a threat to the system, cause misbehaviours or
hang the application due to an unsustainable performance hit.

A keystore file should be secured similarly to a password
file: the sensitive content should not be disclosed even when
the file is leaked to an attacker. In fact, it is often the case
that keystores are shared in order to provide the necessary key
material to various corporate services and applications. Thus,
in our threat model we will always assume that the attacker
has read access to the keystore file (cf. Section III-C). For this
reason we require that the above properties hold even in the
presence of offline attacks. The attacker might, in fact, brute-
force the passwords that are used to enforce confidentiality and
integrity and, consequently, break the respective properties.

B. Design Rules

We now identify a set of core rules that should be em-
braced by the keystore design in order to provide the security
guarantees of Section III-A:

3

R1 Use standard, state-of-the-art cryptography
R2 Choose strong, future-proof cryptographic parameters,

while maintaining acceptable performance
R3 Enforce a typed keystore format

Rule R1 dictates the use of modern and verified algorithms
to achieve the desired keystore properties. It is well-known
that the design of custom cryptography is a complex task even
for experts, whereas standard algorithms have been carefully
analyzed and withstood years of cracking attempts by the
cryptographic community [13]. In this context, the National
Institute of Standards and Technology (NIST) plays a promi-
nent role in the standardization of cryptographic algorithms
and their intended usage [14], engaging the cryptographic
community to update standards according to cryptographic
advances. For instance, NIST declared SHA1 unacceptable to
use for digital signatures beginning in 2014, and more recently,
urged all users of Triple-DES to migrate to AES for encryption
as soon as possible [9] after the findings published in [17].
The KDF function recommended by NIST [52] is PBKDF2,
as defined in the PKCS#5 standard, which supersedes the
legacy PBKDF1. Another standard KDF function is defined in
PKCS#12, although it has been deprecated for confidentiality
purposes in favour of PBKDF2.

Key derivation functions combine the password with a
randomly generated salt and iteratively apply a pseudorandom
function (e.g., a hash function) to produce a cryptographic
key. The salt allows the generation of a large set of keys
corresponding to each password [56], while the high number
of iterations is introduced to hinder brute-force attacks by
significantly increasing computational times. Rule R2 reflects
the need of choosing parameters to keep pace with the state-of-
the-art in cryptographic research and the advances in compu-
tational capabilities. The latest NIST draft on Digital Identity
Guidelines [28] sets the minimum KDF iteration count to
10,000 and the salt size to 32 bits. However, such lower
bounds on the KDF should be significantly raised for critical
keys according to [52] which suggests to set the number of
iterations as high as can be tolerated by the environment,
while maintaining acceptable performance. For instance, Apple
iOS derives the decryption key for the device from the user
password using a KDF with an iteration count calculated
by taking into account the computational capabilities of the
hardware and the impact on the user experience [11].

Finally, rule R3 states that the keystore format must provide
strong typing for keystore content, such that cryptographic
objects are stored and read unambiguously. Despite some
criticism over the years [29], the PKCS#12 standard embraces
this principle providing precise types for storing many cryp-
tography objects. Additionally, given that keystore files are
supposed to be accessed and modified by different parties,
applications parsing the keystore format must be designed to
be robust against malicious crafted content.

Interestingly, not following even one of the aforementioned
rules may lead to a violation of confidentiality and integrity
of the keystore entries. For instance, initializing a secure KDF
with a constant or empty salt, which violates only R2, would
allow an attacker to precompute the set of possible derived
keys and take advantage of rainbow tables [41] to speed up
the brute-force of the password. On the other hand, a KDF with

strong parameters is useless once paired with a weak cipher,
since it is easier to retrieve the encryption key rather than
brute-forcing the password. In this case only R1 is violated.

Additionally, disrespecting Rule R3 may have serious con-
sequences on system integrity (breaking property P3), which
range from applications crashing due to parsing errors while
loading a malicious keystore to more severe scenarios where
the host is compromised. An attacker exploiting type-flaw bugs
could indirectly gain access to the protected entries of a key-
store violating the confidentiality and integrity guarantees. Sys-
tem integrity can additionally be infringed by violating Rule
R2 with an inadequate parameter choice, e.g., an unreasonably
high iteration count value might hang the application, slow
down the system or prevent the access to cryptographic objects
stored in a keystore file due to an excessive computational
load. In Section V we show how noncompliance to these rules
translate into concrete attacks.

C. Threat Model

In our standard attacker model we always assume that the
attacker has read access to the keystore file, either authorized
or by means of a data leakage. We also assume that the attacker
is able to perform offline brute-force attacks using a powerful
system of her choice.

We now present a list of interesting attacker settings, that
are relevant with respect to the security properties defined in
Section III-A:

S1 Write access to the keystore
S2 Integrity password is known
S3 Confidentiality password of an entry is known
S4 Access to previous legitimate versions of the keystore file

Setting S1 may occur when the file is shared over a net-
work filesystem, e.g., in banks and large organizations. Since
keystores include mechanisms for password-based integrity
checks, it might be the case that they are shared with both
read and write permissions, to enable application that possess
the appropriate credentials (i.e., the integrity password) to
modify them. We also consider the case S2 in which the
attacker possesses the integrity password. The password might
have been leaked or discovered through a successful brute-
force attack. The attacker might also know the password as
an insider, i.e., when she belongs to the organization who
owns the keystore. Setting S3 refers to a scenario in which the
attacker knows the password used to encrypt a sensitive object.
Similarly to the previous case, the password might have been
accessed either in a malicious or in honest way. For example,
the password of the key used to sign the apk of an Android
application [1] could be shared among the developers of the
team.

In our experience, there exists a strong correlation be-
tween S2 and S3. Indeed, several products and frameworks use
the same password both for confidentiality and for integrity,
e.g., Apache Tomcat for TLS keys and IBM WebSphere for
LTPA authentication. Additionally, the standard utility for Java
keystores management (keytool) supports this practice when
creating a key: the tool invites the user to just press the
RETURN key to reuse the store password for encrypting the
entry.

4

To summarize, our standard attacker model combined with
S1-S3 covers both reading and writing capabilities of the
attacker on the keystore files together with the possibility of
passwords leakage. On top of these settings, we consider the
peculiar case S4 that may occur when the attacker has access
to backup copies of the keystore or when the file is shared
over platforms supporting version control such as Dropbox,
ownCloud or Seafile.

IV. ANALYSIS OF JAVA KEYSTORES

The Java platform exposes a comprehensive API for cryp-
tography through a provider-based framework called Java
Cryptography Architecture (JCA). A provider consists of a
set of classes that implement cryptographic services and
algorithms, including keystores. In this section, we analyze
the most common Java software keystores implemented in
the Oracle JDK and in a widespread cryptographic library
called Bouncy Castle that ships with a provider compatible
with the JCA. In particular, since the documentation was not
sufficient to assess the design and cryptographic strength of the
keystores, we performed a comprehensive review of the source
code exposing, for the first time, implementation details such
as on-disk file structure and encoding, standard and proprietary
cryptographic mechanisms, default and hard-coded parameters.

For reader convenience, we provide a brief summary of the
cryptographic mechanisms and acronyms used in this section:
Password-Based Encryption (PBE) is an encryption scheme
in which the cryptographic key is derived from a password
through a Key Derivation Function (KDF); a Message Au-
thentication Code (MAC) authenticates data through a secret
key and HMAC is a standard construction for MAC which is
based on cryptographic hash functions; Cipher Block Chaining
(CBC) and Counter with CBC-MAC (CCM) are two standard
modes of operation for block ciphers, the latter is designed to
provide both authenticity and confidentiality.

A. Oracle Keystores

The Oracle JDK offers three keystore implementations,
namely JKS, JCEKS and PKCS12, which are respectively
made available through the providers SUN, SunJCE and
SunJSSE [42]. While JKS and JCEKS rely on proprietary
algorithms to enforce both the confidentiality and the integrity
of the saved entries, PKCS12 relies on open standard format
and algorithms as defined in [47].

JKS: Java KeyStore (JKS) is the first official implemen-
tation of a keystore that appeared in Java since the release
of JDK 1.2. To the time, it is still the default keystore in
Java 8 when no explicit choice is made. It supports encrypted
private key entries and public key certificates stored in the
clear. The file format consists of a header containing the magic
file number, the keystore version and the number of entries,
which is followed by the list of entries. The last part of the file
is a digest used to check the integrity of the keystore. Each
entry contains the type of the object (key or certificate) and
the label, followed by the cryptographic data.

Private keys are encrypted using a custom stream cipher
designed by Sun, as reported in the OpenJDK source code.
In order to encrypt data, a keystream W is generated in

Fig. 1: Decryption in the custom stream cipher used by JKS.

20-bytes blocks with W0 being a random salt and Wi =
SHA1 (password ||Wi−1). The encrypted key E is computed
as the XOR of the private key K with the keystream W ,
hence K and E share the same length. The ciphertext is
then prepended with the salt and appended with the checksum
CK = SHA1 (password ||K). The block diagram for decryp-
tion is shown in Figure 1.

The integrity of the keystore is achieved through a custom
hash-based mechanism: JKS computes the SHA1 hash of
the integrity password, concatenated with the constant string
“Mighty Aphrodite” and the keystore content. The result
is then checked against the 20 bytes digest at the end of the
keystore file.

JCEKS: Java Cryptography Extension KeyStore (JCEKS)
has been introduced after the release of JDK 1.2 in the external
Java Cryptography Extension (JCE) package and merged later
into the standard JDK distribution from version 1.4. Accord-
ing to the Java documentation, it is an alternate proprietary
keystore format to JKS “that uses much stronger encryption in
the form of Password-Based Encryption with Triple-DES” [4].
Besides the improved PBE mechanism, it allows for storing
also symmetric keys.

The file format is almost the same of JKS with a different
magic number in the file header and support for the symmetric
key type. The integrity mechanism is also borrowed from JKS.

JCEKS stores certificates as plaintext, while the PBE used
to encrypt private keys, inspired by PBES1 [40], is based on
20 MD5 iterations and a 64 bits salt. Given that Triple-DES is
used to perform the encryption step, the key derivation process
must be adapted to produce cipher parameters of the adequate
size. In particular, JCEKS splits the salt in two halves and
applies the key derivation process for each of them. The first
192 bits of the combined 256 bits result are used as the Triple-
DES key, while the remaining 64 bits are the initialization
vector.

PKCS12: The PKCS12 keystore supports both private keys
and certificates, with support for secret keys added in Java 8.
Starting from Java 9, Oracle replaced JKS with PKCS12 as
the default keystore type [7].

The keystore file is encoded as an ASN.1 structure accord-
ing to the specification given in [47]. It contains the version
number of the keystore, the list of keys and the certificates.
The last part of the keystore contains an HMAC (together with

5

the parameters for its computation) used to check the integrity
of the entire keystore by means of a password.

The key derivation process, used for both confidentiality
and integrity, is implemented as described in the PKCS#12
standard [47] using SHA1 as hashing function, 1024 itera-
tions and a 160 bit salt. Private keys and secret keys (when
supported) are encrypted using Triple-DES in CBC mode.
Certificates are encrypted as well in a single encrypted blob,
using the RC2 cipher in CBC mode with a 40-bit key. While
each key can be encrypted with a different password, all the
certificates are encrypted reusing the store password.

B. Bouncy Castle Keystores

Bouncy Castle is a widely used open-source crypto API.
As of 2014, it provides the base implementation for the crypto
library used in the Android operating system [24]. It supports
four different keystore types via the BC provider: BKS, UBER,
BCPKCS12 and the new FIPS-compliant BCFKS. Similarly to
the Oracle keystores, all the BC keystores rely on passwords
to enforce confidentiality over the entries and to verify the
integrity of the keystore file.

BKS: The Bouncy Castle Keystore (BKS) allows to store
public/private keys, symmetric keys and certificates. The BKS
keystore relies on a custom file structure to store the entries.
The file contains the version number of the BKS keystore, the
list of stored cryptographic entries and an HMAC, along with
its parameters, computed over the entries as integrity check.

Only symmetric and private keys can be encrypted in BKS,
with Triple-DES in CBC mode. The key derivation schema is
taken from PKCS#12 v1.0, using SHA1 as hashing function,
a random number of iterations between 1024 and 2047 which
is stored for each entry and a 160 bit salt.

The integrity of the keystore is provided by an HMAC
using the same key derivation scheme used for encryption and
applied to the integrity password. For backward compatibil-
ity, the current version of BKS still allows to load objects
encrypted under a buggy PBE mechanism used in previous
versions of the keystore1. If the key is recovered using an old
mechanisms, it is immediately re-encrypted with the newer
PBE scheme.

UBER: UBER shares most of its codebase with BKS, thus
it supports the same types of entries and PBE. Additionally,
it provides an extra layer of encryption for the entire keystore
file, which means that all metadata around the keys and
certificates are encrypted as well. The PBE mechanism used
for encrypting the file is Twofish in CBC mode with a key size
of 256 bits. The KDF is PKCS#12 v1.0 with SHA1 using a
160 bits salt and a random number of iterations in the range
1024 and 2047.

The integrity of the keystore is checked after successful
decryption using the store password. The plaintext consists of
the keystore entries followed by their SHA1 checksum. UBER
recomputes the hash of the keystore and compares it with the
stored digest.

1https://github.com/bcgit/bc-java/blob/master/prov/src/main/java/org/
bouncycastle/jce/provider/BrokenPBE.java

BCFKS: BCFKS is a new FIPS-compliant [53] keystore
introduced in the version 1.56 of Bouncy Castle2 offering
similar features to UBER. This keystore provides support for
secret keys in addition to asymmetric keys and certificates.

The entire keystore contents is encrypted using AES in
CCM mode with a 256 bits key, so to provide protection
against introspection. After the encrypted blob, the file contains
a block with a HMAC-SHA512 computed over the encrypted
contents to ensure the keystore integrity. The store password
is used to derive the two keys for encryption and integrity.

All key derivation operations use PBKDF2 with HMAC-
SHA512 as pseudorandom function, 512 bits of salt and
1024 iterations. Each key entry is separately encrypted with
a different password using the same algorithm for the key-
store confidentiality, while this possibility is not offered for
certificates.

BCPKCS12: The BCPKCS12 keystore aims to provide
a PKCS#12-compatible implementation. It shares the same
algorithms and default parameters for key derivation, crypto-
graphic schemes and file structure of the Oracle JDK version
detailed in Section IV-A. Compared to Oracle, the Bouncy
Castle implementation lacks support for symmetric keys and
the possibility to protect keys with different passwords, since
all the entries and certificates are encrypted under the store
password. The BC provider also offers a variant of the
PKCS#12 keystore that allows to encrypt certificates using the
same PBE of private keys, that is Triple-DES in CBC mode.

C. Keystores Adoption

We have analyzed 300 Java projects supporting keystores
that are hosted on Github to estimate the usage of the imple-
mentations examined in this paper. Applications range from
amateur software to well-established libraries developed by
Google, Apache and Eclipse.

We searched for occurrences of known patterns used to
instantiate keystores in the code of each project. We have found
that JKS is the most widespread keystore with over 70% of
the applications supporting it. PKCS12 is used in 32% of the
analyzed repositories, while JCEKS adoption is close to 10%.
The Bouncy Castle keystores UBER and BCPKCS12 are used
only in 3% of the projects, while BKS can be found in about
6% of the examined software. Finally, since BCFKS is a recent
addition to the Bouncy Castle library, none of the repositories
is supporting it.

D. Summary

In Table I we summarize the features and the algorithms
(rows) offered by the keystore implementations (columns)
analyzed in this section. Table Ia does not contain the row
“Store Encryption” since none of the JDK keystores provides
protection against introspection.

To exemplify, by reading Table Ia we understand that the
JCEKS keystore of the SunJCE provider relies on a custom
PBE mechanism based on MD5 using only 20 iterations to
derive the Triple-DES key for the encryption of keys. The
mark shows that the keystore supports secret keys, while
denotes that certificates cannot be encrypted.

2https://github.com/bcgit/bc-java/commit/80fd6825

6

TABLE I: Summary of the keystores.

(a) Oracle JDK 8u144 and below.

JKS JCEKS PKCS12

Provider Sun SunJCE SunJSSE

Support for secret keys *

Keys PBE

KDF Custom (SHA1) Custom (MD5) PKCS12 (SHA1)
Salt 160b 64b 160b
Iterations - 20 1024
Cipher Stream cipher 3DES (CBC) 3DES (CBC)
Key size - 192b 192b

Certificates
PBE

KDF PKCS12 (SHA1)
Salt 160b
Iterations 1024
Cipher RC2 (CBC)
Key size 40b

Store
Integrity

KDF
SHA1 with
password

SHA1 with
password

PKCS12 (SHA1)
Salt 160b
Iterations 1024
Mechanism HMAC (SHA1)

* since Java 8

(b) Bouncy Castle 1.57 and below.

BKS UBER BCFKS BCPKCS12

Provider Bouncy Castle Bouncy Castle Bouncy Castle Bouncy Castle

Support for secret keys

Keys PBE

KDF PKCS12 (SHA1) PKCS12 (SHA1) PBKDF2 (HMAC-SHA512) PKCS12 (SHA1)
Salt 160b 160b 512b 160b
Iterations 1024–2047 1024–2047 1024 1024
Cipher 3DES (CBC) 3DES (CBC) AES (CCM) 3DES (CBC)
Key size 192b 192b 256b 192b

Certificates
PBE

KDF PKCS12 (SHA1)
Salt 160b
Iterations 1024
Cipher RC2 / 3DES (CBC)
Key size 40b / 192b

Store
Encryption

KDF PKCS12 (SHA1) PBKDF2 (HMAC-SHA512)
Salt 160b 512b
Iterations 1024–2047 1024
Cipher Twofish (CBC) AES (CCM)
Key size 256b 256b

Store
Integrity

KDF PKCS12 (SHA1)
SHA1 after
decrypt

PBKDF2 (HMAC-SHA512) PKCS12 (SHA1)
Salt 160b 512b 160b
Iterations 1024–2047 1024 1024
Mechanism HMAC (SHA1) HMAC (SHA512) HMAC (SHA1)

V. ATTACKS

In the previous section, we have shown that the analyzed
keystores use very diverse key derivation functions and crypto-
graphic mechanisms and, in several cases, they do not adhere
to standards or use obsolete and ad-hoc mechanisms. We now
discuss how this weakens the overall security of the keystore
and enables or facilitates attacks. In particular, we show that
keystores using weak or ad-hoc implementations for password-
based encryption or integrity checks open the way to password
brute-forcing. During the in-depth analysis of keystores, we
have also found security flaws that can be exploited in practice
to mount denial of service and code execution attacks.

Attacks in this section are organized according to the
security properties violated, as defined in Section III-A. For
each attack we provide a detailed description discussing the
attacker settings and the rules that are not followed by the

keystore implementation (cf. Section III-B). We conclude with
some general security considerations that are not specific to
any particular attack.

Table II provides a high-level overview of the properties
which are guaranteed by the analyzed keystores with respect to
the attacks presented in this section. We consider versions of
Oracle JDK and Bouncy Castle before and after disclosing our
findings to the developers. Specifically, we refer to JDK 8u144
and 8u152 for Oracle, while version 1.57 of Bouncy Castle is
compared against the development repository as of November
28, 2017.3 We use the symbol Ý to point out improvements in
newer versions. Details of the changes are listed in Section VII.
The symbol denotes that a property is satisfied by the
keystore under any attacker setting and the implementation
adhere to the relevant design rules listed in Section III-B. We

3https://github.com/bcgit/bc-java/tree/8ed589d

7

Algorithm 1 JKS 1-block Crack

1: procedure JKS 1BLOCKCRACK(Salt,E1..n,CK)
2: known plaintext← 0x30 ‖ length(E)
3: test bytes← known plaintext⊕ E1

4: for password in passwords do
5: W1 ← SHA1(password ‖ Salt)
6: if W1 = test bytes then
7: K ← DECRYPT(Salt,E, password)
8: checksum← SHA1(password ‖K)
9: if CK = checksum then

10: return password

use when no clear attack can be mounted but design rules are
not completely satisfied, e.g. a legacy cipher like Triple-DES is
used. The symbol indicates that the property is broken under
the standard attacker model. When a property is broken only
under a specific setting Sx, we report it in the table as Sx. If
a more powerful attack is enabled by additional settings, we
clarify in the footnotes.

As an example, consider the system integrity property (P3)
in the JCEKS keystore: up to JDK 8u144 included, write
capabilities (S1) allow to DoS the application loading the
keystore; when integrity and key confidentiality passwords are
known (S2 and S3), the attacker can also achieve arbitrary
code execution on the system (cf. note 3 in the table). The
rightmost side of the arrow indicates that JDK 8u152 does not
include mitigations against the code execution attack.

A. Attacks on Entries Confidentiality (P1)

JKS Password Cracking: The custom PBE mechanism
described in Section IV-A for the encryption of private keys is
extremely weak. The scheme requires only one SHA1 hash and
a single XOR operation to decrypt each block of the encrypted
entry resulting in a clear violation of rule R1. Since there is
no mechanism to increase the amount of computation needed
to derive the key from the password, also rule R2 is neglected.

Despite the poor cryptographic scheme, each attempt of a
brute-force password recovery attack would require to apply
SHA1 several times to derive the whole keystream used to
decrypt the private key. As outlined in Figure 1, a successful
decryption is verified by matching the last block (CK) of the
protected entry with the hash of the password concatenated
with the decrypted key. For instance, a single password attempt
to decrypt a 2048 bit RSA private key entry requires over 60
SHA1 operations.

We found that such password recovery attack can be greatly
improved by exploiting the partial knowledge over the plaintext
of the key. Indeed, the ASN.1 structure of a key entry enables
to efficiently test each password with a single SHA1 operation.
In JKS, private keys are serialized as DER-encoded ASN.1
objects, along the PKCS#1 standard [39]. For instance, an
encoded RSA key is stored as a sequence of bytes starting
with byte 0x30 which represent the ASN.1 type SEQUENCE
and a number of bytes representing the length of the encoded
key. Since the size of the encrypted key is the same as the
size of the plaintext, these bytes are known to the attacker.
On average, given n bytes of the plaintext it is necessary

1024 2048 4096 8192 16384
RSA Private Key Size (bits)

103

104

105

106

107

Pa

ss
w

or
ds

 /
se

co
nd

JKS 1-Block
JCEKS 1-Block
JKS Standard
JCEKS Standard

Fig. 2: Performance comparison of password cracking for
private RSA keys on JKS and JCEKS using both the standard
and the improved 1-block method on a Intel Core i7 6700
CPU.

to continue decryption beyond the first block only for one
password every 256n attempts.

The pseudocode of the attack is provided in Algorithm
1, using the same notation introduced in Section IV-A. We
assume that the algorithm is initialized with the salt, all the
blocks of the encrypted key and the checksum. The XOR oper-
ation between the known plaintext and the first encrypted block
(line 3) is performed only once for all the possible passwords.
As a halt condition, the result is then compared against the
digest of the salt concatenated to the tested password (lines 5-
6). To further verify the correctness of the password, a standard
decrypt is performed.

A comparison between the standard cracking attack and our
improved version is depicted in Figure 2. From the chart it is
possible to see that the cost of the single block attack (referred
to as 1-block) is independent from the size of the encrypted
entry, while the number of operations required to carry out the
standard attack is bound to the size of the DER-encoded key.
As an example, for a 4096 bit private RSA key, the 1-block
approach is two orders of magnitude faster than the standard
one.

Based on our findings, that we previously mentioned in
a blog post [25], this attack has been recently integrated into
Hashcat 3.6.04 achieving a speed of 8 billion password tries/sec
with a single NVIDIA GTX 1080 GPU.

JCEKS Password Cracking: The PBE mechanism dis-
cussed in Section IV-A uses a custom KDF that performs
20 MD5 iterations to derive the encryption key used in the
Triple-DES cipher. This value is three orders of magnitude
lower than the iteration count suggested in [28], thus violating
both rules R1 and R2. Given that keys are DER-encoded as
well, it is possible to speed up a brute-force attack using a
technique similar to the one discussed for JKS. Figure 2 relates
the standard cracking speed to the single block version. Notice

4https://hashcat.net/forum/thread-6630.html

8

TABLE II: Properties guaranteed by keystores with respect to attacks, before and after updates listed in Section VII.

JKS JCEKS PKCS12 BKS UBER BCFKS BCPKCS12

(P1) Entries confidentiality Ý 1 Ý 1

(P2) Keystore integrity 2 2 Ý Ý Ý

(P3) System integrity 3
S1 Ý S1-3 S1 Ý S1 S1 Ý

1 only confidentiality of certificates can be violated
2 under additional settings S1 or S4 it might be possible to use rainbow tables
3 under additional settings S2 and S3 it is possible to achieve arbitrary code execution on JDK ≤ 8u152

Legend:

Sx

property is always satisfied
no clear attacks but rules not completely satified
property is broken in the standard attacker model
property is broken under a attacker setting Sx

that the cost of a password-recovery attack is one order of
magnitude higher than JKS in both variants due to the MD5
iterations required by the custom KDF of JCEKS.

PKCS#12 Certificate Key Cracking: Oracle PKCS12 and
BCPKCS12 keystores allow for the encryption of certificates.
The PBE is based on the KDF defined in the PKCS#12
standard paired with the legacy RC2 cipher in CBC mode with
a 40 bit key, resulting in a clear violation of rule R1. Due
to the reduced key space, the protection offered by the KDF
against offline attacks can be voided by directly brute-forcing
the cryptographic key. Our serialized tests, performed using
only one core of an Intel Core i7 6700 CPU, show that the
brute-force performance is 8,300 passwords/s for password
testing (consisting of a KDF and decryption run), while the key
cracking speed is 1,400,000 keys/s. The worst-case scenario
that requires the whole 40-bits key space to be exhausted,
requires about 9 days of computation on our system. This time
can be reduced to about 1 day by using all eight cores of our
processor. We estimate that a modern high-end GPU should
be able to perform this task in less than one hour.

Notice, however, that although finding the key so easily
makes the encryption of certificates pointless, an attacker
cannot use the key value to reduce the complexity of cracking
the integrity password since the random salt used by the KDF
makes it infeasible to precompute the mapping from passwords
to keys.

B. Attacks on Keystore Integrity (P2)

JKS/JCEKS Integrity Password Cracking: The store in-
tegrity mechanism used by both JKS and JCEKS (cf. Sec-
tion IV-A) only relies on the SHA1 hash digest of the integrity
password, concatenated with the constant string “Mighty
Aphrodite” and with the keystore data. In contrast with
rule R1, this technique based on a single application of SHA1
enables to efficiently perform brute-force attacks against the
integrity password. Section VI reports on the computational
effort required to attack the integrity mechanism for different
sizes of the keystore file.

Additionally, since SHA1 is based on the Merkle-Damgård
construction, this custom approach is potentially vulnerable
to extension attacks [26]. For instance, it may be possible
for an attacker with write access to the keystore (S1) to
remove the original digest at the end of the file, extend the
keystore content with a forged entry and recompute a valid
hash without knowing the keystore password. Fortunately, this
specific attack is prevented in JKS and JCEKS since the file
format stores the number of entries in the keystore header.

JKS/JCEKS Integrity Digest Precomputation: The afore-
mentioned construction to ensure the integrity of the keystore
suffers from an additional problem. Assume the attacker has
access to an empty keystore, for example when an old copy
of the keystore file is available under a file versioning storage
(S4). Alternatively, as special case of S1, the attacker may
be able to read the file, but the interaction with the keystore
is mediated by an application that allows to remove entries
without disclosing the store password. This file consists only
of a fixed header followed by the SHA1 digest computed
using the password, the string “Mighty Aphrodite” and
the header itself. Given that there is no random salting in
the digest computation, it would be possible to mount a very
efficient attack to recover the integrity password by exploiting
precomputed hash chains, as done in rainbow tables [41].

C. Attacks on System Integrity (P3)

JCEKS Code Execution: A secret key entry is stored in a
JCEKS keystore as a Java object having type SecretKey.
First, the key object is serialized and wrapped into a
SealedObject instance in an encrypted form; next, this
object is serialized again and saved into the keystore.

When the keystore is loaded, all the serialized Java ob-
jects stored as secret key entries are evaluated. An attacker
with write capabilities (S1) may construct a malicious entry
containing a Java object that, when deserialized, allows her to
execute arbitrary code in the application context. Interestingly,
the attack is not prevented by the integrity check since keystore
integrity is verified only after parsing all the entries.

The vulnerable code can be found in the engineLoad
method of the class JceKeyStore implemented by the Sun-
JCE provider.5 In particular, the deserialization is performed
on lines 837-838 as follows:

// read the sealed key
try {

ois = new ObjectInputStream(dis);
entry.sealedKey =

(SealedObject) ois.readObject();
...

Notice that the cast does not prevent the attack since it is
performed after the object evaluation.

To stress the impact of this vulnerability, we provide
three different attack scenarios: i) the keystore is accessed by

5http://hg.openjdk.java.net/jdk8u/jdk8u/jdk/file/5534221c23fc/src/share/
classes/com/sun/crypto/provider/JceKeyStore.java

9

multiple users over a shared storage. An attacker can replace
or add a single entry of the keystore embedding the malicious
payload, possibly gaining control of multiple hosts; ii) a
remote application could allow its users to upload keystores
for cryptographic purposes, such as importing certificates
or configuring SSL/TLS. A crafted keystore loaded by the
attacker may compromise the remote system; iii) an attacker
may even forge a malicious keystore and massively spread it
like a malware using email attachments or instant messaging
platforms. Users with a default application associated to the
keystore file extension (e.g., keystore inspection utilities such
as KSE 6) have a high probability of being infected just by
double clicking on the received keystore. Interestingly, all the
malicious keystores generated during our tests did not raise
any alert on antivirus tools completing a successful scan by
virustotal.com.

We checked the presence of the vulnerability from Java 6
onwards. We were able to achieve arbitrary command exe-
cution on the host with JDK ≤ 7u21 and JDK ≤ 8u20 by
forging a payload with the tool ysoserial.7 Newer versions
are still affected by the vulnerability, but the JDK classes
exploited to achieve code execution have been patched. Since
the deserialization occurs within a Java core class, the classpath
is restricted to bootstrap and standard library classes. However,
by embedding a recursive object graph in a JCEKS entry, an
attacker can still hang the deserialization routine consuming
CPU indefinitely and thus causing a DoS in the target machine.
We were able to mount this attack on any version of the Oracle
JDK ≤ 8u144.

The implementation choice for storing secret keys in
JCEKS is a clear violation of Rule R3, since these entities
are essentially stored as Java code. The correct approach is to
adopt standard formats and encodings, such as the PKCS#8
format used in the PKCS12 keystore.

JCEKS Code Execution After Decryption: When the
attacker knows the integrity password and the confidentiality
password of a secret key entry (S2, S3) in addition to S1, the
previous attack can be further improved to achieve arbitrary
command execution even on the latest, at the time of writing,
Java 8 release (8u152). This variant of the attack assumes
that the application loading the JCEKS keystore makes use
of one of the widespread third-party libraries supported by
ysoserial, such as Apache Commons Collections or the
Spring framework: such libraries have been found [3] to
contain vulnerable gadget chains that can be exploited by the
malicious payload.

When a SealedObject wrapping a secret key is success-
fully loaded and decrypted, an additional deserialization call is
performed over the decrypted content. The SealedObject
class extends the classpath to allow the deserialization of any
class available in the application scope, including third-party
libraries. By exploiting this second deserialization step, an
attacker may construct more powerful payloads to achieve
command execution.

The exploitation scenarios are similar to the ones already
discussed in the previous variant of the attack. Additionally, we

6http://keystore-explorer.org
7https://github.com/frohoff/ysoserial

point out that even an antivirus trained to detect deserialization
signatures would not be able to identify the malicious content
since the payload is stored in encrypted form in the keystore.

DoS by Integrity Parameters Abuse: Many keystores rely
on a keyed MAC function to ensure the integrity of their
contents. The parameters of the KDF used to derive the key
from the store password are saved inside the file. Thus, an
attacker with write capabilities (S1) may tamper with the KDF
parameters to affect the key derivation phase that is performed
before assessing the integrity of the keystore file. In particular,
the attacker may set the iteration count to an unreasonably
high value in order to perform a DoS attack on applications
loading the keystore.

We found that Oracle PKCS12, BKS and BCPKCS12
implementations are affected by this problem. Starting from
valid keystore files, we managed to set the iteration count value
to 231−1. Loading such keystores required around 15 minutes
at full CPU usage on a modern computer. According to [52]
the iteration count should not impact too heavily on the user-
perceived performance, thus we argue that this is a violation
of Rule R2.

D. Bad Design Practices

During our analysis we found that some of the keystores
suffered from bad design decisions and implementation issues
that, despite not leading to proper attacks, could lead to serious
security consequences.

Our review of the Oracle PKCS12 keystore code showed
that the KDF parameters are not treated uniformly among
MAC, keys and certificates. During a store operation, the
Oracle implementation does not preserve the original iteration
count and salt size for MAC and certificates that has been
found at load time in the input keystore file. Indeed, iteration
count and salt size are silently set to the hard-coded values
of 1024 and 20 byte, respectively. Since this keystore format
is meant to be interoperable, this practice could have secu-
rity consequences when dealing with keystores generated by
third-party tools. For instance, PKCS12-compatible keystores
generated by OpenSSL default to 2048 iterations: writing out
such keystore with the Oracle JDK results in halving the cost
of a password recovery attack.

The Bouncy Castle BCPKCS12 implementation suffers a
similar problem: in addition to MAC and certificate parame-
ters, also the iteration count and the salt size used for private
keys are reverted to default values when the keystore is saved
to disk. Following our report to the Bouncy Castle developers,
this behaviour is currently being addressed in the next release
by preserving the original parameters whenever possible.8

Lastly, the construction of the integrity mechanism for the
UBER keystore could cause an information leakage under
specific circumstances. After a successful decryption using the
store password, UBER recomputes the hash of the keystore and
compares it with the stored digest. This MAC-then-encrypt
approach is generally considered a bad idea, since it can lead
to attacks if, for example, there is a perceptible difference
in behavior (an error message, or execution time) between

8https://github.com/bcgit/bc-java/commit/ebe1b25a

10

a decryption that fails because the padding is invalid, or a
decryption that fails because the hash is invalid (a so-called
padding oracle attack [54]).

E. Security Considerations

We now provide general considerations on the security
of Java keystores. The first one is about using the same
password for different purposes. If the integrity password is
also used to ensure the confidentiality of encrypted entries,
then the complexity of breaking either the integrity or the
confidentiality of stored entries turns out to be the one of
attacking the weakest mechanism. For instance, we consider
a keystore where cracking the integrity password is more
efficient than recovering the password used to protect sensitive
entries: as shown in Section VI, this is the case of PKCS12 and
BCPKCS12 keystores. Under this setting, sensitive keys can
be leaked more easily by brute-forcing the integrity password.

Although this is considered a bad practice in general [33],
all the keystores analyzed permit the use of the same password
to protect sensitive entries and to verify the integrity of the
keystore. This practice is indeed widespread [27] and, as
already stated in Section III-C, prompted by keytool itself.
Furthermore, our analysis found that the BCPKCS12 keystore
forcibly encrypts keys and certificates with the store password.
For these reasons, we argue that using the same password
for integrity and confidentiality is not a direct threat to the
security of stored keys when both mechanisms are resistant to
offline attacks and a strong password is used. Still the security
implications of this practice should be seriously considered.

The second consideration regards how the integrity of a
keystore is assessed. Indeed, a poorly designed application may
bypass the integrity check on keystores by providing a null or
empty password to the Java load() function. All the Oracle
keystores analyzed in the previous section and BouncyCastle
BKS are affected by this problem. On the other hand, keystores
providing protection to entries inspection, such as UBER and
BCFKS, cannot be loaded with an empty password since
the decryption step would fail. Lastly, BCPKCS12 throws
an exception if an attempt of loading a file with an empty
password is made. Clearly, if the integrity check is omitted, an
attacker can trivially violate Property P2 by altering, adding or
removing any entry saved in the clear. Conversely, the integrity
of encrypted sensitive keys is still provided by the decryption
mechanism that checks for the correct padding sequence at the
end of the plaintext. Since the entries are typically encoded
(e.g., in ASN.1), a failure in the parse routine could also
indicate a tampered ciphertext.

We also emphasize that the 1-block cracking optimization
introduced in V-A is not limited to JKS and JCEKS. Indeed,
by leveraging the structure of saved entries, all the analyzed
keystores enable to reduce the cost of the decrypt operation to
check the correctness of a password. However, excluding JKS
and JCEKS, this technique only provides a negligible speed-
up on the remaining keystores given that the KDF is orders of
magnitude slower than the decrypt operation.

Finally, we point out that the current design of password-
based keystores cannot provide a proper key-revocation mech-
anism without a trusted third-party component. For instance,
it may be the case that a key has been leaked in the clear and

subsequently substituted with a fresh one in newer versions
of a keystore file. Under settings S1 and S4, an attacker may
replace the current version of a keystore with a previously
intercepted valid version, thus restoring the exposed key. The
integrity mechanism is indeed not sufficient to distinguish
among different versions of a keystore protected with the same
store password. For this reason, the store password must be
updated to a fresh one every time a rollback of the keystore
file is not acceptable by the user, which is typically the case
of a keystore containing a revoked key.

VI. ESTIMATING BRUTE-FORCE SPEED-UP

We have discussed how weak PBEs and integrity checks in
keystores can expose passwords to brute-forcing. In this sec-
tion we make an empirical comparison of the cracking speed
to bruteforce both the confidentiality and integrity mechanisms
in the analyzed keystores. We also compute the speed-up with
respect to BCFKS, as it is the only keystore using a standard
and modern KDF, i.e., PBKDF2, which provides the best brute-
forcing resistance. Notice, however, that the latest NIST draft
on Digital Identity Guidelines [28] sets the minimum KDF
iteration count to 10,000 which is one order of magnitude more
than what is used in BCFKS (cf. Table I). Thus all the speed-
up values should be roughly multiplied by 10 if compared
with a baseline implementation using PBKDF2 with 10,000
iterations.

It is out of the scope of this paper to investigate brute-
forcing strategies. Our tests only aim at comparing, among
the different keystores, the actual time to perform the key
derivation step and the subsequent cryptographic operations,
including the check to assess key correctness. Our study is
independent of the actual password guessing strategy adopted
by the attacker.

A. Test Methodology

We developed a compatible C implementation of the key
decryption and the integrity check for each keystore type.
Each implementation is limited to the minimum steps required
to check the correctness of a test password. This procedure
is then executed in a timed loop to evaluate the cracking
speed. Algorithms 2 and 3 show the pseudocode of our
implementations. Note that, in both algorithms, we set the
password length to 10 bytes because it is an intermediate value
between trivial and infeasible. Similarly, since the iteration
count in BKS and UBER is chosen randomly in the range
1024 and 2047, we set it to the intermediate value 1536.

Confidentiality: The confidentiality password brute-forcing
loop (Algorithm 2) is divided into three steps: key derivation,
decryption and a password correctness check. The last step is
included in the loop only to account for its computational cost
in the results. Both PBES1 (PKCS#5) and PKCS#12 password-
based encryption schemes, used in all keystores but BCFKS,
require to run the KDF twice to derive the decryption key and
the IV. On the other hand, in BCFKS the initialization vector
is not derived from the password but simply stored with the
ciphertext. During our tests we set encrypted entry to a fixed
size to resemble an on-disk entry containing a 2048 bits RSA
key. However, in Section V-A we have shown how the partial
knowledge of the plaintext structure of a JKS key entry can

11

Algorithm 2 Confidentiality password cracking benchmark
1: procedure BENCHCONFIDENTIALITY(test duration)
2: encrypted entry ← (B1, ..., B2000)
3: passwords← (pw1, ..., pwn) . all 10-bytes passwords
4: salt← constant
5: counter ← 0
6: while ELAPSEDTIME < test duration do
7: password← next(passwords)
8: key← KDFkey(password, salt)
9: iv← KDFiv(password, salt) . not in JKS, BCFKS

10: plaintext← DECRYPTBLOCK(encrypted entry, key, iv)
11: VERIFYKEY(plaintext)
12: counter ← counter + 1
13: return counter

Algorithm 3 Integrity password cracking benchmark
1: procedure BENCHINTEGRITY(test duration)
2: keystore contentsmall ← (B1, ..., B2048)
3: keystore contentmedium ← (B1, ..., B8192)
4: keystore contentlarge ← (B1, ..., B16384)
5: passwords← (pw1, ..., pwn) . all 10-bytes passwords
6: salt← constant
7: counter(small,medium,large) ← 0
8: for all keystore content, counter do
9: while ELAPSEDTIME < test duration do

10: password← next(passwords)
11: key← KDFmac(password, salt) . not in JKS, JCEKS
12: mac← MAC(keystore content, key)
13: VERIFYMAC(mac)
14: counter ← counter + 1
15: return counter(small,medium,large)

be leveraged to speed-up brute-forcing. This shortcut can be
applied to all the analyzed keystores in order to decrypt only
the first block of encrypted entry. For this reason, the key size
becomes irrelevant while testing for a decryption password.

Integrity: Similarly, the integrity password cracking code
(Algorithm 3) is divided into three steps: key derivation, a
hash/MAC computation and the password correctness check.
The key derivation step is run once to derive the MAC key in
all keystores, with the exception of JKS and JCEKS where the
password is fed directly to the hash function (cf. Section IV-A).
As described later in this section, the speed of KDF plus
MAC calculation can be highly influenced by the keystore size,
thus we performed our tests using a keystore content of three
different sizes: 2048, 8192 and 16384 bytes.

Test configuration: We relied on standard implementations
of the cryptographic algorithms to produce comparable results:
the OpenSSL library (version 1.0.2g) provides all the needed
hash functions, ciphers and KDFs, with the exception of
Twofish where we used an implementation from the author
of the cipher.9 All the tests were performed on a desktop
computer running Ubuntu 16.04 and equipped with an Intel
Core i7 6700 CPU; source code of our implementations has
been compiled with GCC 5.4 using -O3 -march=native
optimizations. We run each benchmark on a single CPU core
because the numeric results can be easily scaled to a highly
parallel systems. To collect solid and repeatable results each
benchmark has been run for 60 seconds.

9https://www.schneier.com/academic/twofish/download.html

B. Results

The charts in Figure 3 show our benchmarks on the crack-
ing speed for confidentiality (Figure 4a) and integrity (Fig-
ure 4b). On the x-axis there are the 7 keystore types: we group
together different keystores when the specific mechanism is
shared among the implementations, i.e., PKCS12/BCPKCS12
for both confidentiality and integrity and JKS/JCEKS for in-
tegrity. On the y-axis we report the number of tested passwords
per second doing a serial computation on a single CPU core:
note that the scale of this axis is logarithmic. We stress that
our results are meant to provide a relative, inter-keystore
comparison rather than an absolute performance index. To this
end, a label on top of each bar indicates the speed-up relative
to the strongest BCFKS baseline. Absolute performance can
be greatly improved using both optimized parallel code and
more powerful hardware which ranges from dozens of CPU
cores or GPUs to programmable devices such as FPGA or
custom-designed ASICs [30], [22], [34].

Confidentiality: From the attack described in Section V-A,
it follows that cracking the password of an encrypted key
contained in JKS - the default Java keystore - is at least three
orders of magnitude faster than in BCFKS. Even without a
specific attack, recovering the same password from JCEKS is
over one hundred times faster due to its low (20) iteration
count. By contrast, the higher value (1024 or 1024-2047) used
in PKCS12, BKS and UBER translates into a far better offline
resistance as outlined in the chart.

Integrity: Similar considerations can be done for the
integrity password resistance. Finding this password in all
keystores but JKS is equivalent, or even faster than breaking
the confidentiality password. Moreover, the performance of
these keystores is influenced by the size of the file due to the
particular construction of the MAC function (cf. Section IV-A).
The speed gain (w.r.t. confidentiality) visible in PKCS12, BKS
and UBER is caused by the missing IV derivation step which,
basically, halves the number or KDF iterations. Interestingly, in
BCFKS there is no difference between the two scores: since the
whole keystore file is encrypted, we can reduce the integrity
check to a successful decryption, avoiding the computation
overhead of the HMAC on the entire file.

VII. DISCLOSURE AND SECURITY UPDATES

We have timely disclosed our findings to Oracle and
Bouncy Castle developers in May 2017. The Oracle Secu-
rity Team has acknowledged the reported issues with CVE
IDs [37], [38] and has released most of the fixes in the October
2017 Critical Patch Update (CPU) [44]. In the following list,
we summarize the changes already published by Oracle:

• keytool suggests to switch to PKCS12 when JKS or
JCEKS keystores are used;

• improved KDF strength of the PBE in JCEKS by raising
the iteration count to 200,000. Added a ceiling value of
5 millions to prevent parameter abuse;

• in PKCS12 the iteration count has been increased to
50,000 for confidentiality and 100,000 for integrity. The
same upper bound as in JCEKS is introduced;

• fixed the first JCEKS deserialization vulnerability de-
scribed in Section V-C by checking that the ob-
ject being deserialized is of the correct type, i.e.,

12

(a) Speed comparison of password recovery attack for key encryption
(confidentiality).

(b) Speed comparison of password recovery attack for keystore in-
tegrity, considering different keystore sizes.

Fig. 3: Comparison of keystores password cracking speed. Bar labels indicate the speed-up to the strongest BCFKS baseline.

SealedObjectForKeyProtector, and by impos-
ing a recursion limit to prevent infinite loops.

Additionally, Oracle informed us that a fix for the second
JCEKS deserialization vulnerability is planned for release in
the January 2018 CPU [43].

In version 1.58 of the library, Bouncy Castle developers
fixed the parameter abuse vulnerability of BCPKCS12 by
adding an optional Java system property that imposes an
upper bound for the KDF iteration count. Moreover, they
have committed in the development repository the following
changes that will appear in version 1.59:

• in BCFKS, the iteration count is raised to 51,200 for both
confidentiality and integrity;

• in BCPKCS12, the iteration count is increased to 51,200
and 102,400 for confidentiality and integrity, respectively.

Table II outlines the improved security guarantess offered by
keystore implemenations following the fixes released by Oracle
and Bouncy Castle. Additionally, in Figure 4 we show the
updated results of the brute-force resistance benchmarks to
reflect the improved KDF parameters. JCEKS and BCFKS now
offer the best resistance to offline brute-force attacks of the
confidentiality password. However, JCEKS still provides the
weakest integrity mechanism. Thus, if the same password is
used both for key encryption and for keystore integrity, then the
increased protection level can easily be voided by attacking the
latter mechanism. On the other hand, both the confidentiality
and the integrity mechanisms have been updated in PKCS12.
This keystore, which is now the default in Java 9, offers a much
higher security level with respect to the previous release.

VIII. CONCLUSION

Keystores are the standard way to store and manage cryp-
tographic keys and certificates in Java applications. In the liter-
ature there is no in-depth analysis of keystore implementations
and the documentation does not provide enough information

to evaluate the security level offered by each keystore. Thus,
developers cannot make a reasoned and informed choice
among the available alternatives.

In this paper we have thoroughly analyzed seven keystore
implementations from the Oracle JDK and the Bouncy Castle
library. We have described all the cryptographic mechanisms
used to guarantee standard security properties on keystores,
including offline attacks. We have pointed out that several
implementations adopt non-standard mechanisms and we have
shown how this can drastically speed-up the brute-forcing of
the keystore passwords. Additionally, we reported new and
unpublished attacks and defined a precise threat model under
which they may occur. These attacks range from breaking the
confidentiality of stored keys to arbitrary code execution on
remote systems and denial of service. We also showed how
a keystore can be potentially weaponized by an attacker to
spread malware.

We have reported the security flaws to Oracle and Bouncy
Castle. Most of the issues in the Oracle JDK have been fixed
in the October 2017 Critical Patch Update [44] following CVE
IDs [37], [38]. Similarly, Bouncy Castle developers committed
changes to address several problems discussed in this paper.

Following our analysis and succeeding fixes, it appears
evident that the security offered by JKS, the default keystore in
Java 8 and previous releases, is totally inadequate. Its improved
version JCEKS still uses a broken integrity mechanism. For
these reasons, we favorably welcome the decision of Oracle
to switch to PKCS12 as the default keystore type in the
recent Java 9 release. After the previously discussed updates
this keystore results quite solid, although certificate protection
is bogus and key encryption relies on legacy cryptographic
primitives.

Alternatives provided by Bouncy Castle have been found to
be less susceptible to attacks. Among the analyzed keystores,
the updated BCFKS version clearly sets the standard from
a security standpoint. Indeed, this keystore relies on mod-

13

(a) Speed comparison of password recovery attack for key encryption
(confidentiality).

(b) Speed comparison of password recovery attack for keystore in-
tegrity, considering different keystore sizes.

Fig. 4: Revised password cracking benchmarks after library updates.

ern algorithms, uses adequate cryptographic parameters and
provides protection against introspection of keystore contents.
Moreover, the development version of Bouncy Castle includes
preliminary support for scrypt [45], [46] in BCFKS, a memory-
hard function that requires significant amount of RAM. Con-
sidering the steady nature of keystore files, we argue that in
addition to approved standard functions, it would be advisable
to consider future-proof cryptographic primitives so to be more
resistant against parallelized attacks [18], [20].

ACKNOWLEDGMENTS

The authors would like to thank Stefano Calzavara and
the anonymous reviewers for their valuable comments and
suggestions to improve the quality of the paper.

This work has been partially supported by CINI Cyber-
security National Laboratory within the project FilieraSicura:
Securing the Supply Chain of Domestic Critical Infrastructures
from Cyber Attacks (www.filierasicura.it) funded by CISCO
Systems Inc. and Leonardo SpA.

REFERENCES

[1] “Android Studio User Guide: Sign Your App.” [Online]. Available:
https://developer.android.com/studio/publish/app-signing.html

[2] “WebLogic Integration 7.0: Configuring the Keystore.” [Online].
Available: http://docs.oracle.com/cd/E13214 01/wli/docs70/b2bsecur/
keystore.htm

[3] “Vulnerability Note VU#576313,” 2015. [Online]. Available: https:
//www.kb.cert.org/vuls/id/576313

[4] “Java Cryptography Architecture (JCA) Reference Guide,” 2016.
[Online]. Available: https://docs.oracle.com/javase/8/docs/technotes/
guides/security/crypto/CryptoSpec.html

[5] “JDK 7 Security Enhancements,” 2016. [Online]. Avail-
able: https://docs.oracle.com/javase/8/docs/technotes/guides/security/
enhancements-7.html

[6] “Apache Tomcat 7 Documentation: SSL/TLS Configuration,”
2017. [Online]. Available: https://tomcat.apache.org/tomcat-7.0-doc/ssl-
howto.html

[7] “JDK 9 Early Access Release Notes,” 2017. [Online]. Available:
http://jdk.java.net/9/release-notes

[8] “Spring Crypto Utils Documentation: Keystore,” 2017. [Online].
Available: http://springcryptoutils.com/keystore.html

[9] “Update to Current Use and Deprecation of TDEA,” 2017.
[Online]. Available: https://beta.csrc.nist.gov/News/2017/Update-to-
Current-Use-and-Deprecation-of-TDEA

[10] M. Abadi and B. Warinschi, “Password-Based Encryption Analyzed,”
in Proceedings of the 32nd International Colloquium on Automata,
Languages and Programming, ICALP 2005, 2005, pp. 664–676.

[11] Apple inc., “iOS Security Guide,” Tech. Rep., 03 2017. [Online]. Avail-
able: https://www.apple.com/business/docs/iOS Security Guide.pdf

[12] R. Bardou, R. Focardi, Y. Kawamoto, L. Simionato, G. Steel, and
J. Tsay, “Efficient Padding Oracle Attacks on Cryptographic Hardware,”
in Proceedings of the 32nd Annual Cryptology Conference on Advances
in Cryptology, CRYPTO 2012, 2012, pp. 608–625.

[13] E. Barker, “Guideline for Using Cryptographic Standards in the Fed-
eral Government: Cryptographic Mechanisms,” http://nvlpubs.nist.gov/
nistpubs/SpecialPublications/NIST.SP.800-175B.pdf, August 2016.

[14] E. Barker and A. Roginsky, “Transitions: Recommendation for Tran-
sitioning the Use of Cryptographic Algorithms and Key Lengths
(Rev. 1),” http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-131Ar1.pdf, November 2015.

[15] M. Bellare, T. Ristenpart, and S. Tessaro, “Multi-instance Security and
Its Application to Password-Based Cryptography,” in Proceedings of
the 32nd Annual Cryptology Conference on Advances in Cryptology,
CRYPTO 2012, 2012, pp. 312–329.

[16] B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet,
M. Kohlweiss, A. Pironti, P. Strub, and J. K. Zinzindohoue, “A Messy
State of the Union: Taming the Composite State Machines of TLS,”
in Proceedings of the 36th IEEE Symposium on Security and Privacy,
S&P 2015, 2015, pp. 535–552.

[17] K. Bhargavan and G. Leurent, “On the Practical (In-)Security of 64-bit
Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2016, 2016, pp. 456–467. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978423

[18] A. Biryukov, D. Dinu, and D. Khovratovich, “Argon2: New Generation
of Memory-Hard Functions for Password Hashing and Other Applica-
tions,” in Proceedings of the 1st IEEE European Symposium on Security
and Privacy, EuroS&P 2016, 2016.

[19] D. Bleichenbacher, “Chosen Ciphertext Attacks Against Protocols
Based on the RSA Encryption Standard PKCS #1,” in Proceedings of
the 18th Annual International Cryptology Conference on Advances in
Cryptology, CRYPTO ’98, 1998, pp. 1–12.

14

[20] D. Boneh, H. Corrigan-Gibbs, and S. Schechter, “Balloon Hashing: A
Memory-Hard Function Providing Provable Protection Against Sequen-
tial Attacks,” in Proceedings of the 22nd Annual International Confer-
ence on the Theory and Applications of Cryptology and Information
Security, ASIACRYPT 2016, 2016.

[21] W. E. Burr, D. F. Dodson, E. M. Newton, R. A. Perlner, W. T. Polk,
S. Gupta, E. A. Nabbus, U. D. of Commerce, N. I. of Standards, and
Technology, Electronic Authentication Guideline: Recommendations of
the National Institute of Standards and Technology - Special Publication
800-63-1, 2012.

[22] R. Clayton and M. Bond, “Experience Using a Low-Cost FPGA Design
to Crack DES Keys,” in Proceedings of the 4th International Workshop
on Cryptographic Hardware and Embedded Systems, CHES 2002, 2002,
pp. 579–592.

[23] J. Clulow, “On the Security of PKCS#11,” in Proceedings of the 5th
International Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2003, 2003, pp. 411–425.

[24] T. Cooijmans, J. de Ruiter, and E. Poll, “Analysis of Secure Key Storage
Solutions on Android,” in Proceedings of the 4th ACM Workshop on
Security and Privacy in Smartphones & Mobile Devices, SPSM 2014,
2014, pp. 11–20.

[25] Cryptosense S.A., “Mighty Aphrodite Dark Secrets of the Java
Keystore,” 2016. [Online]. Available: https://cryptosense.com/mighty-
aphrodite-dark-secrets-of-the-java-keystore/

[26] Y. Dodis, T. Ristenpart, and T. Shrimpton, “Salvaging Merkle-Damgård
for Practical Applications,” in Proceedings of the 28th Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, EUROCRYPT 2009, 2009, pp. 371–388.

[27] P. Gasti and K. B. Rasmussen, “On the Security of Password Manager
Database Formats,” in Proceedings of the 17th European Symposium on
Research in Computer Security, ESORICS 2012, 2012, pp. 770–787.

[28] P. A. Grassi, J. L. Fenton, E. M. Newton, R. A. Perlner, A. R.
Regenscheid, W. E. Burr, J. P. Richer, N. B. Lefkovitz, J. M. Danker,
Y. Choong, K. K. Greene, and M. F. Theofanos, “Digital Identity
Guidelines: Authentication and Lifecycle Management,” https://pages.
nist.gov/800-63-3/sp800-63b.html#sec5, 2017.

[29] P. Gutmann, “Lessons Learned in Implementing and Deploying Crypto
Software,” in Proceedings of the 11th USENIX Security Symposium,
2002, pp. 315–325. [Online]. Available: http://dl.acm.org/citation.cfm?
id=647253.720291

[30] J. P. Kaps and C. Paar, “Fast DES Implementations for FPGAs and Its
Application to a Universal Key-Search Machine,” in Proceedings of the
5th Annual International Workshop in Selected Areas in Cryptography,
SAC’98, 1999, pp. 234–247.

[31] P. G. Kelley, S. Komanduri, M. L. Mazurek, R. Shay, T. Vidas, L. Bauer,
N. Christin, L. F. Cranor, and J. Lopez, “Guess Again (and Again
and Again): Measuring Password Strength by Simulating Password-
Cracking Algorithms,” in Proceedings of the 33rd IEEE Symposium on
Security and Privacy, S&P 2012, 2012, pp. 523–537.

[32] J. Kelsey, B. Schneier, C. Hall, and D. Wagner, “Secure Applications of
Low-Entropy Keys,” in Proceedings of the 1st International Workshop
on Information Security, ISW ’97, 1997, pp. 121–134.

[33] Z. Li, W. He, D. Akhawe, and D. Song, “The Emperor’s New Password
Manager: Security Analysis of Web-based Password Managers,” in
Proceedings of the 23rd USENIX Security Symposium, 2014, pp. 465–
479.

[34] I. Magaki, M. Khazraee, L. V. Gutierrez, and M. B. Taylor, “ASIC
Clouds: Specializing the Datacenter,” in Proceedings of the 43rd Inter-
national Symposium on Computer Architecture, ISCA 2016, 2016, pp.
178–190.

[35] MITRE, “CVE-2012-4929: CRIME attack,” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2012-4929, September 2012.

[36] MITRE, “CVE-2014-0160: Heartbleed bug,” http://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2014-0160, December 2013.

[37] MITRE, “CVE-2017-10345,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-10345, October 2017.

[38] MITRE, “CVE-2017-10356,” http://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2017-10356, October 2017.

[39] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch, “PKCS#1: RSA
Cryptography Specifications (Version 2.2),” https://www.ietf.org/rfc/
rfc8017.txt, November 2016.

[40] K. Moriarty, B. Kaliski, and A. Rusch, “PKCS#5: Password-Based
Cryptography Specification (Version 2.1),” https://www.ietf.org/rfc/
rfc8018.txt, January 2017.

[41] P. Oechslin, “Making a Faster Cryptanalytic Time-Memory Trade-Off,”
in Proceedings of the 23rd Annual International Cryptology Conference
on Advances in Cryptology, CRYPTO 2003, 2003, pp. 617–630.

[42] Oracle Corporation, “Java Cryptography Architecture, Standard Algo-
rithm Name Documentation for JDK 8,” http://docs.oracle.com/javase/
8/docs/technotes/guides/security/StandardNames.html#KeyStore, 2014.

[43] Oracle Corporation, Private communication, October 2017.
[44] Oracle Corporation, “Critical Patch Updates, Security Alerts and Third

Party Bulletin,” October 2017. [Online]. Available: http://www.oracle.
com/technetwork/security-advisory/cpuoct2017-3236626.html

[45] C. Percival, “Stronger Key Derivation via Sequential Memory-Hard
Functions,” May 2009.

[46] C. Percival and S. Josefsson, “The scrypt Password-Based Key Deriva-
tion Function,” https://tools.ietf.org/html/rfc7914, August 2016.

[47] RSA Laboratories, “PKCS#12: Personal Information Exchange Syntax
Standard (Version 1.0),” June 1999.

[48] RSA Laboratories, “PKCS#11 v2.30: Cryptographic Token Interface
Standard ,” April 2009.

[49] RSA Laboratories, “PKCS#12: Personal Information Exchange Syntax
Standard (Version 1.1),” October 2012.

[50] M. Sabt and J. Traoré, “Breaking into the KeyStore: A Practical Forgery
Attack Against Android KeyStore,” in Proceedings of the 21st European
Symposium on Research in Computer Security (ESORICS 2016), Part
II, 2016, pp. 531–548.

[51] B. Schneier, Applied Cryptography (2nd Ed.): Protocols, Algorithms,
and Source Code in C. John Wiley & Sons, Inc., 1995.

[52] M. S. Turan, E. Barker, W. Burr, and L. Chen, “Recommenda-
tion for Password-Based Key Derivation. Part 1: Storage Appli-
cations,” http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-
132.pdf, December 2010.

[53] A. Vassilev, “Annex A: Approved Security Functions for FIPS PUB
140-2, Security Requirements for Cryptographic Modules,” http://csrc.
nist.gov/publications/fips/fips140-2/fips1402annexa.pdf, April 2016.

[54] S. Vaudenay, “Security Flaws Induced by CBC Padding - Applications
to SSL, IPSEC, WTLS ...” in Proceedings of the 21st International Con-
ference on the Theory and Applications of Cryptographic Techniques
Advances in Cryptology, EUROCRYPT 2002, 2002, pp. 534–546.

[55] M. Weir, S. Aggarwal, M. Collins, and H. Stern, “Testing Metrics
for Password Creation Policies by Attacking Large Sets of Revealed
Passwords,” in Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, 2010, pp. 162–175.

[56] F. F. Yao and Y. L. Yin, “Design and Analysis of Password-Based
Key Derivation Functions,” IEEE Transactions on Information Theory,
vol. 51, no. 9, pp. 3292–3297, 2005.

[57] Y. Zhang, F. Monrose, and M. K. Reiter, “The Security of Modern
Password Expiration: An Algorithmic Framework and Empirical Anal-
ysis,” in Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, 2010.

15

