
WPSE: FORTIFYING WEB PROTOCOLS
VIA BROWSER-SIDE SECURITY

MONITORING

Stefano Calzavara
Riccardo Focardi

Matteo Maffei
Clara SchneidewindMarco Squarcina

Mauro Tempesta

August 17, 2018 - 27th Usenix Security Symposium

OVERVIEW OF A WEB PROTOCOL

!2RP IdP

OVERVIEW OF A WEB PROTOCOL

!2RP IdP

OVERVIEW OF A WEB PROTOCOL

!2RP IdP

OVERVIEW OF A WEB PROTOCOL

!2

user = MrStorm, pwd = ●●●●●●●

RP IdP

MOTIVATIONS

Designing and implementing web protocols is HARD!
• Bansal et al. - Discovering Concrete Attacks on Website Authorization by Formal Analysis (S&P ’12)

• Wang et al. - Signing Me onto Your Accounts through Facebook and Google: A Traffic-Guided

Security Study of Commercially Deployed Single-Sign-On Web Services (S&P ’12)

• Sun and Beznosov - The Devil is in the (Implementation) Details: An Empirical Analysis of OAuth

SSO Systems (CCS ’12)

• Fett et al. - A Comprehensive Formal Security Analysis of OAuth 2.0 (CCS ’16)

• …

!3

MOTIVATIONS

Designing and implementing web protocols is HARD!
• Bansal et al. - Discovering Concrete Attacks on Website Authorization by Formal Analysis (S&P ’12)

• Wang et al. - Signing Me onto Your Accounts through Facebook and Google: A Traffic-Guided

Security Study of Commercially Deployed Single-Sign-On Web Services (S&P ’12)

• Sun and Beznosov - The Devil is in the (Implementation) Details: An Empirical Analysis of OAuth

SSO Systems (CCS ’12)

• Fett et al. - A Comprehensive Formal Security Analysis of OAuth 2.0 (CCS ’16)

• …

!3

WHY?

MOTIVATIONS

Designing and implementing web protocols is HARD!
• Bansal et al. - Discovering Concrete Attacks on Website Authorization by Formal Analysis (S&P ’12)

• Wang et al. - Signing Me onto Your Accounts through Facebook and Google: A Traffic-Guided

Security Study of Commercially Deployed Single-Sign-On Web Services (S&P ’12)

• Sun and Beznosov - The Devil is in the (Implementation) Details: An Empirical Analysis of OAuth

SSO Systems (CCS ’12)

• Fett et al. - A Comprehensive Formal Security Analysis of OAuth 2.0 (CCS ’16)

• …

!3

WHY?The browser is not aware of the existence of
web protocols and of their semantics!

OUR PROPOSAL - WPSE

!4

Extend the browser with a lightweight security monitor
that enforces the compliance of the browser behaviors

with respect to the web protocol specifications

OUR PROPOSAL - WPSE

!4

Extend the browser with a lightweight security monitor
that enforces the compliance of the browser behaviors

with respect to the web protocol specifications

Implemented as a

Google Chrome extension

OUR PROPOSAL - WPSE

!4

Extend the browser with a lightweight security monitor
that enforces the compliance of the browser behaviors

with respect to the web protocol specifications

Advantages:

1. users of vulnerable websites are automatically protected against a large

class of attacks

2. specifications can be written once and enforced on several sites

Implemented as a

Google Chrome extension

SECURITY CHALLENGES IN WEB PROTOCOLS

!5

1

2

3

Compliance with the protocol flow
• Preserve the intended sequence of messages

exchanged by honest participants

• Perform integrity checks on the contents of protocol

messages

Secrecy of message components
• Enforce the confidentiality of protocol secrets like

tokens and credentials

TACKLING THE CHALLENGES IN WPSE

WPSE protocol specification:

• Structure and order of messages

• Desired security policies (confidentiality and integrity)

TACKLING THE CHALLENGES IN WPSE

• Protocol messages are blocked if

• not in the correct order

• integrity constraints on messages are not satisfied

• Always allow protocol unrelated messages

• Secrets in incoming messages are substituted with random
placeholders before they enter the DOM

• Placeholders in outgoing requests are replaced with secrets
only if sent to origins entitled to learn them

1

2

3

FORTIFYING OAUTH 2.0

user = MrStorm, pwd = ●●●●●●●

!7

RP_id, rdr_uri, state

RP IdP

U

Login form

1

2

3

auth_code, state

rdr_uri4

5 auth_code, RP_id, rdr_uri

6 access_token

7 access_token

8 resource

FORTIFYING OAUTH 2.0

user = MrStorm, pwd = ●●●●●●●

!7RP IdP

U

Login form

1

2

3

4

5 auth_code, RP_id, rdr_uri

6 access_token

7 access_token

8 resource

WPSE

Protocol Flow
2 → 3 → 4

with same rdr_uri and state
in steps 2, 4

RP_id, rdr_uri, state

auth_code, state

rdr_uri

FORTIFYING OAUTH 2.0

user = MrStorm, pwd = ●●●●●●●

!7RP IdP

U

Login form

1

2

3

4

5 auth_code, RP_id, rdr_uri

6 access_token

7 access_token

8 resource

WPSE

Protocol Flow
2 → 3 → 4

with same rdr_uri and state
in steps 2, 4

Secrecy
RP < auth_code, state > IdP

RP_id, rdr_uri, state

auth_code, state

rdr_uri

SESSION SWAPPING [SB12]

!8

user = h4ckerb0y, pwd = ●●●●●●●

RP_id, rdr_uri

RP IdP

Login form

1

2

3

A auth_code

!8

U

A

SESSION SWAPPING [SB12]

!8

user = h4ckerb0y, pwd = ●●●●●●●

RP_id, rdr_uri

RP IdP

Login form

1

2

3

A auth_code

!8

U

A

Gimme

torrents plz!

SESSION SWAPPING [SB12]

!8

user = h4ckerb0y, pwd = ●●●●●●●

RP_id, rdr_uri

RP IdP

Login form

1

2

3

A auth_code

rdr_uri
4

5
A auth_code, RP_id, rdr_uri

6 A access_token

7 A access_token

8 A resource

!8

U

A

Gimme

torrents plz! A auth_code

SESSION SWAPPING [SB12]

!8

user = h4ckerb0y, pwd = ●●●●●●●

RP_id, rdr_uri

RP IdP

Login form

1

2

3

A auth_code

rdr_uri
4

5
A auth_code, RP_id, rdr_uri

6 A access_token

7 A access_token

8 A resource

!8

U

A

Gimme

torrents plz! A auth_code

Protocol flow violation!

Request blocked by WPSE

STATE LEAK ATTACK [FKS16]

!9

user = MrStorm, pwd = ●●●●●●●

RP_id, rdr_uri, state

RP IdP

Login form

1

2

3

rdr_uri4

5
auth_code, RP_id, rdr_uri

6 access_token

7 access_token

8 resource

!9

U

auth_code, state

STATE LEAK ATTACK [FKS16]

!9

user = MrStorm, pwd = ●●●●●●●

RP_id, rdr_uri, state

RP IdP

Login form

1

2

3

rdr_uri4

5
auth_code, RP_id, rdr_uri

6 access_token

7 access_token

8 resource

!9

U

Attacker’s website

auth_code, state

Referer header

auth_code, state

STATE LEAK ATTACK [FKS16]

!9

user = MrStorm, pwd = ●●●●●●●

RP_id, rdr_uri, state

RP IdP

Login form

1

2

3

rdr_uri4

5
auth_code, RP_id, rdr_uri

6 access_token

7 access_token

8 resource

!9

U

Attacker’s website

auth_code, state

Referer header

auth_code, state

WPSE replaces secret data

with random placeholders

? ??

FORMAL RESULTS

(H1) The protocol fulfills safety property P with a benign
webpage

(H2) WPSE allows only a subset of the I/O sequences
performed by the browser in a honest protocol run

(H3) Secrets are not leaked and securely stored by the
browser

!10

FORMAL RESULTS

(H1) The protocol fulfills safety property P with a benign
webpage

(H2) WPSE allows only a subset of the I/O sequences
performed by the browser in a honest protocol run

(H3) Secrets are not leaked and securely stored by the
browser

!10

The protocol fulfills P with a compromised browser
monitored by WPSE

EXPERIMENTAL EVALUATION

• Manual investigation of 30 RPs for each IdP from Alexa top 100K

• Analyzed both authorization code mode and implicit mode of OAuth 2.0

!11

Security

• Leakage of sensitive data due to
advertisement libraries (4 RPs)

• Lack or misuse of the state
parameter (55 RPs)

Compatibility

Problems due to security critical
deviations in the protocol flow (7
RPs), e.g. auth code is sent twice,
second time over HTTP

A NEW ATTACK AGAINST GOOGLE IMPLEMENTATION OF
SAML 2.0

!12

• Similar to the session swapping attack presented before

• Login CSRF against Google Suite applications (Google Drive, GMail, …)

A NEW ATTACK AGAINST GOOGLE IMPLEMENTATION OF
SAML 2.0

!12

Feb 4

Report
to Google

• Similar to the session swapping attack presented before

• Login CSRF against Google Suite applications (Google Drive, GMail, …)

A NEW ATTACK AGAINST GOOGLE IMPLEMENTATION OF
SAML 2.0

!12

Feb 4
Feb 27

Report
to Google

• Similar to the session swapping attack presented before

• Login CSRF against Google Suite applications (Google Drive, GMail, …)

A NEW ATTACK AGAINST GOOGLE IMPLEMENTATION OF
SAML 2.0

!12

Feb 4
Feb 27

Apr 25

Report
to Google

• Similar to the session swapping attack presented before

• Login CSRF against Google Suite applications (Google Drive, GMail, …)

SUMMING UP

!13

Lightweight policies on the client-side suffice to enforce
provable security guarantees in web protocols

SUMMING UP

• Support for additional protocols e.g., e-payments

• Automatic techniques to synthesize WPSE policies

from protocol specifications / browser traffic

• Embed WPSE into real browsers

!13

Lightweight policies on the client-side suffice to enforce
provable security guarantees in web protocols

THANK YOU!
QUESTIONS?

tempesta@unive.it

https://sites.google.com/site/wpseproject/

